3.1.97 \(\int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [97]

3.1.97.1 Optimal result
3.1.97.2 Mathematica [B] (warning: unable to verify)
3.1.97.3 Rubi [A] (verified)
3.1.97.4 Maple [B] (warning: unable to verify)
3.1.97.5 Fricas [A] (verification not implemented)
3.1.97.6 Sympy [F]
3.1.97.7 Maxima [F]
3.1.97.8 Giac [F(-2)]
3.1.97.9 Mupad [F(-1)]

3.1.97.1 Optimal result

Integrand size = 25, antiderivative size = 187 \[ \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\left (3 a^2+6 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{8 a^{3/2} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}-\frac {(3 a+b) \cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 a f}-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{4 f} \]

output
-1/8*(3*a^2+6*a*b-b^2)*arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/ 
2))/a^(3/2)/f+arctanh(sec(f*x+e)*b^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*b^(1/ 
2)/f-1/8*(3*a+b)*cot(f*x+e)*csc(f*x+e)*(a-b+b*sec(f*x+e)^2)^(1/2)/a/f-1/4* 
cot(f*x+e)*csc(f*x+e)^3*(a-b+b*sec(f*x+e)^2)^(1/2)/f
 
3.1.97.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1049\) vs. \(2(187)=374\).

Time = 7.08 (sec) , antiderivative size = 1049, normalized size of antiderivative = 5.61 \[ \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sqrt {\frac {a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (\frac {(-3 a \cos (e+f x)-b \cos (e+f x)) \csc ^2(e+f x)}{8 a}-\frac {1}{4} \cot (e+f x) \csc ^3(e+f x)\right )}{f}+\frac {\frac {\left (3 a^2-2 a b-b^2\right ) (1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \text {arctanh}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )-\sqrt {b} \left (2 \text {arctanh}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}-\frac {\left (3 a^2+14 a b-b^2\right ) (1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \text {arctanh}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )+\sqrt {b} \left (2 \text {arctanh}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{8 a f} \]

input
Integrate[Csc[e + f*x]^5*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f* 
x)])]*(((-3*a*Cos[e + f*x] - b*Cos[e + f*x])*Csc[e + f*x]^2)/(8*a) - (Cot[ 
e + f*x]*Csc[e + f*x]^3)/4))/f + (((3*a^2 - 2*a*b - b^2)*(1 + Cos[e + f*x] 
)*Sqrt[(1 + Cos[2*(e + f*x)])/(1 + Cos[e + f*x])^2]*Sqrt[(a + b + (a - b)* 
Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(4*Sqrt[a]*ArcTanh[(-(Sqrt[a]*(- 
1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + 
f*x)/2]^2)^2])/(2*Sqrt[b])] - Sqrt[b]*(2*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt 
[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]/Sqrt[a]] + Log[a 
- 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 
 + Tan[(e + f*x)/2]^2)^2]]))*(-1 + Tan[(e + f*x)/2]^2)*(1 + Tan[(e + f*x)/ 
2]^2)*Sqrt[(4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2)/(1 + T 
an[(e + f*x)/2]^2)^2])/(4*Sqrt[a]*Sqrt[b]*Sqrt[a + b + (a - b)*Cos[2*(e + 
f*x)]]*Sqrt[(-1 + Tan[(e + f*x)/2]^2)^2]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*( 
-1 + Tan[(e + f*x)/2]^2)^2]) - ((3*a^2 + 14*a*b - b^2)*(1 + Cos[e + f*x])* 
Sqrt[(1 + Cos[2*(e + f*x)])/(1 + Cos[e + f*x])^2]*Sqrt[(a + b + (a - b)*Co 
s[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(4*Sqrt[a]*ArcTanh[(-(Sqrt[a]*(-1 
+ Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f* 
x)/2]^2)^2])/(2*Sqrt[b])] + Sqrt[b]*(2*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4 
*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]/Sqrt[a]] + Log[a - 
2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-...
 
3.1.97.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.11, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 4147, 25, 369, 440, 25, 398, 224, 219, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \tan (e+f x)^2}}{\sin (e+f x)^5}dx\)

\(\Big \downarrow \) 4147

\(\displaystyle \frac {\int -\frac {\sec ^4(e+f x) \sqrt {b \sec ^2(e+f x)+a-b}}{\left (1-\sec ^2(e+f x)\right )^3}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\sec ^4(e+f x) \sqrt {b \sec ^2(e+f x)+a-b}}{\left (1-\sec ^2(e+f x)\right )^3}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\frac {1}{4} \int \frac {\sec ^2(e+f x) \left (4 b \sec ^2(e+f x)+3 (a-b)\right )}{\left (1-\sec ^2(e+f x)\right )^2 \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

\(\Big \downarrow \) 440

\(\displaystyle \frac {\frac {1}{4} \left (\frac {\int -\frac {8 a b \sec ^2(e+f x)+(a-b) (3 a+b)}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{2 a}+\frac {(3 a+b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}\right )-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{4} \left (\frac {(3 a+b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {\int \frac {8 a b \sec ^2(e+f x)+(a-b) (3 a+b)}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{2 a}\right )-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{4} \left (\frac {(3 a+b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {\left (3 a^2+6 a b-b^2\right ) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)-8 a b \int \frac {1}{\sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)}{2 a}\right )-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{4} \left (\frac {(3 a+b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {\left (3 a^2+6 a b-b^2\right ) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)-8 a b \int \frac {1}{1-\frac {b \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}}{2 a}\right )-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{4} \left (\frac {(3 a+b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {\left (3 a^2+6 a b-b^2\right ) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a-b}}d\sec (e+f x)-8 a \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{2 a}\right )-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{4} \left (\frac {(3 a+b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {\left (3 a^2+6 a b-b^2\right ) \int \frac {1}{1-\frac {a \sec ^2(e+f x)}{b \sec ^2(e+f x)+a-b}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a-b}}-8 a \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{2 a}\right )-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{4} \left (\frac {(3 a+b) \sec (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{2 a \left (1-\sec ^2(e+f x)\right )}-\frac {\frac {\left (3 a^2+6 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{\sqrt {a}}-8 a \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{2 a}\right )-\frac {\sec ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 \left (1-\sec ^2(e+f x)\right )^2}}{f}\)

input
Int[Csc[e + f*x]^5*Sqrt[a + b*Tan[e + f*x]^2],x]
 
output
(-1/4*(Sec[e + f*x]^3*Sqrt[a - b + b*Sec[e + f*x]^2])/(1 - Sec[e + f*x]^2) 
^2 + (-1/2*(((3*a^2 + 6*a*b - b^2)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - 
 b + b*Sec[e + f*x]^2]])/Sqrt[a] - 8*a*Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[e + f* 
x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/a + ((3*a + b)*Sec[e + f*x]*Sqrt[a - 
b + b*Sec[e + f*x]^2])/(2*a*(1 - Sec[e + f*x]^2)))/4)/f
 

3.1.97.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 440
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[g*(b*e - a*f)*(g*x)^(m - 1)*(a + 
 b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] - Simp[ 
g^2/(2*b*(b*c - a*d)*(p + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + 
d*x^2)^q*Simp[c*(b*e - a*f)*(m - 1) + (d*(b*e - a*f)*(m + 2*q + 1) - b*2*(c 
*f - d*e)*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, q}, x] && 
 LtQ[p, -1] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4147
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^ 
m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m + 1 
)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[( 
m - 1)/2]
 
3.1.97.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2047\) vs. \(2(165)=330\).

Time = 1.40 (sec) , antiderivative size = 2048, normalized size of antiderivative = 10.95

method result size
default \(\text {Expression too large to display}\) \(2048\)

input
int(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/64/f/a^(7/2)*((a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*cs 
c(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)/((-cos(f*x+e)+1)^2*csc(f* 
x+e)^2-1)^2)^(1/2)*((-cos(f*x+e)+1)^2*csc(f*x+e)^2-1)*(-10*(a*(-cos(f*x+e) 
+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^ 
2*csc(f*x+e)^2+a)^(1/2)*(-cos(f*x+e)+1)^6*a^(7/2)*csc(f*x+e)^6+2*b*(a*(-co 
s(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f* 
x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*(-cos(f*x+e)+1)^6*a^(5/2)*csc(f*x+e)^6+12* 
a^4*ln(2/(-cos(f*x+e)+1)^2*(-a*(-cos(f*x+e)+1)^2+2*b*(-cos(f*x+e)+1)^2+(a* 
(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-co 
s(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2))* 
(-cos(f*x+e)+1)^4*csc(f*x+e)^4+12*ln((a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+(a* 
(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-co 
s(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)*a^(1/2)-a+2*b)/a^(1/2))*a^4*(-cos(f*x+ 
e)+1)^4*csc(f*x+e)^4-64*b^(1/2)*ln(4*(b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+b^( 
1/2)*(a*(-cos(f*x+e)+1)^4*csc(f*x+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+ 
4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+a)^(1/2)+b)/((-cos(f*x+e)+1)^2*csc(f*x+ 
e)^2-1))*a^(7/2)*(-cos(f*x+e)+1)^4*csc(f*x+e)^4+24*b*ln(2/(-cos(f*x+e)+1)^ 
2*(-a*(-cos(f*x+e)+1)^2+2*b*(-cos(f*x+e)+1)^2+(a*(-cos(f*x+e)+1)^4*csc(f*x 
+e)^4-2*a*(-cos(f*x+e)+1)^2*csc(f*x+e)^2+4*b*(-cos(f*x+e)+1)^2*csc(f*x+e)^ 
2+a)^(1/2)*a^(1/2)*sin(f*x+e)^2+a*sin(f*x+e)^2))*a^3*(-cos(f*x+e)+1)^4*...
 
3.1.97.5 Fricas [A] (verification not implemented)

Time = 1.08 (sec) , antiderivative size = 1273, normalized size of antiderivative = 6.81 \[ \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Too large to display} \]

input
integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[-1/16*(((3*a^2 + 6*a*b - b^2)*cos(f*x + e)^4 - 2*(3*a^2 + 6*a*b - b^2)*co 
s(f*x + e)^2 + 3*a^2 + 6*a*b - b^2)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 
 + 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e 
) + a + b)/(cos(f*x + e)^2 - 1)) - 8*(a^2*cos(f*x + e)^4 - 2*a^2*cos(f*x + 
 e)^2 + a^2)*sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b 
)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2) 
- 2*((3*a^2 + a*b)*cos(f*x + e)^3 - (5*a^2 + a*b)*cos(f*x + e))*sqrt(((a - 
 b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(a^2*f*cos(f*x + e)^4 - 2*a^2*f*c 
os(f*x + e)^2 + a^2*f), 1/8*(((3*a^2 + 6*a*b - b^2)*cos(f*x + e)^4 - 2*(3* 
a^2 + 6*a*b - b^2)*cos(f*x + e)^2 + 3*a^2 + 6*a*b - b^2)*sqrt(-a)*arctan(s 
qrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) 
+ 4*(a^2*cos(f*x + e)^4 - 2*a^2*cos(f*x + e)^2 + a^2)*sqrt(b)*log(-((a - b 
)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e 
)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2) + ((3*a^2 + a*b)*cos(f*x + e)^3 - 
 (5*a^2 + a*b)*cos(f*x + e))*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e 
)^2))/(a^2*f*cos(f*x + e)^4 - 2*a^2*f*cos(f*x + e)^2 + a^2*f), -1/16*(16*( 
a^2*cos(f*x + e)^4 - 2*a^2*cos(f*x + e)^2 + a^2)*sqrt(-b)*arctan(sqrt(-b)* 
sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) + ((3*a^ 
2 + 6*a*b - b^2)*cos(f*x + e)^4 - 2*(3*a^2 + 6*a*b - b^2)*cos(f*x + e)^2 + 
 3*a^2 + 6*a*b - b^2)*sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 + 2*sqrt(a...
 
3.1.97.6 Sympy [F]

\[ \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \csc ^{5}{\left (e + f x \right )}\, dx \]

input
integrate(csc(f*x+e)**5*(a+b*tan(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x)**5, x)
 
3.1.97.7 Maxima [F]

\[ \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{5} \,d x } \]

input
integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e)^5, x)
 
3.1.97.8 Giac [F(-2)]

Exception generated. \[ \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument Type
 
3.1.97.9 Mupad [F(-1)]

Timed out. \[ \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^5} \,d x \]

input
int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^5,x)
 
output
int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^5, x)